Physics Friday 54

Quantum Mechanics and Momentum
Part 11: Angular Momentum Eigenfunctions

In our previous part, we introduced the ladder operators, and showed that they generate a “ladder” of simulataneous eigenstates to L2 and Lz. Now, we examine the angular momentum operators in spherical coordinates (r,θ,φ).
Using our conversions and chain rule, we find the linear momentum operator components to be:

From these, we find
Note that all of these are fully independent of the radial coordinate.
Summing the squares of these, we can find that

This then gives us our eigenvalue relation as being
Compare this to the angular portion of Laplace’s equation in spherical coordinates. We see then that the eigenfunctions of L2 are (any radial function times) spherical harmonics:
and to make our wavefunctions 2π periodic in φ, we require that j be an integer. This means that the eigenvalues of Lz should be integer multiples of ℏ, ranging from –jℏ to jℏ.

Applying to , we find
and so
So the spherical harmonic is the simultaneous eigenfunction for L2 and Lz, with eigenvalues and , where j and m are integers with j≥0, –jmj.

Lastly, we note that it can be shown, via more that one method, that if the potential depends purely on the radial coordinate, V(r), so that the problem is spherically symmetric, then the quantum hamiltonian commutes with the angular momentum operators L2 and Lz, so that one may simultaneously specify the energy, the square magnitude of the angular momentum, and the projection onto one axis of the angular momentum. This is very useful in determining the electron wavefunctions for the hydrogen atom.


Tags: , , , , , ,

One Response to “Physics Friday 54”

  1. Physics Friday 60 « Twisted One 151’s Weblog Says:

    […] in spherical coordinates, with the angular components being the spherical harmonics (see here and here). As in here, when we perform the spherical coordinate separation , we obtain radial equation […]

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: