Monday Math 71

Let x, y, and z be positive real numbers. Then prove that .

Due to (permutation) symmetry, we may assume without loss of generality, that . Then , and so by Chebyshev’s inequality:


And by Nesbitt’s inequality,
,
so

Advertisements

Tags: , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: